skip to main content


Search for: All records

Creators/Authors contains: "do Nascimento Ritter, Matias"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Surficial shell accumulations from shallow marine settings are typically averaged over centennial-to-millennial time scales and dominated by specimens that died in the most recent centuries, resulting in strongly right-skewed age-frequency distributions (AFDs). However, AFDs from modern offshore settings (outer shelf and uppermost continental slope) still need to be explored. Using individually dated shells (14C-calibrated amino acid racemization), we compared AFDs along an onshore-offshore gradient across the southern Brazilian shelf, with sites ranging from the inner shelf, shallow-water (< 40 m) to offshore, deep-water (> 100 m) settings. The duration of time averaging is slightly higher in deeper water environments, and the AFD shapes change along the depositional profile. The inner shelf AFDs are strongly right-skewed due to the dominance of shells from the most recent millennia (median age range: 0–3 ka). In contrast, on the outer shelf and the uppermost continental slope, AFDs are symmetrical to left-skewed and dominated by specimens that died following the Last Glacial Maximum (median age range: 15–18 ka). The onshore-offshore changes in the observed properties of AFDs—increased median age and decreased skewness, but only slightly increased temporal mixing—likely reflect changes in sea level and concurrent water depth-related changes in biological productivity. These results suggest that on a passive continental margin subject to post-glacial sea-level changes, the magnitude of time-averaging of shell assemblages is less variable along the depositional profile than shell assemblage ages and the shapes of AFDs.

     
    more » « less
  2. null (Ed.)
    ABSTRACT The direct carbonate procedure for accelerator mass spectrometry radiocarbon (AMS 14 C) dating of submilligram samples of biogenic carbonate without graphitization is becoming widely used in a variety of studies. We compare the results of 153 paired direct carbonate and standard graphite 14 C determinations on single specimens of an assortment of biogenic carbonates. A reduced major axis regression shows a strong relationship between direct carbonate and graphite percent Modern Carbon (pMC) values (m = 0.996; 95% CI [0.991–1.001]). An analysis of differences and a 95% confidence interval on pMC values reveals that there is no significant difference between direct carbonate and graphite pMC values for 76% of analyzed specimens, although variation in direct carbonate pMC is underestimated. The difference between the two methods is typically within 2 pMC, with 61% of direct carbonate pMC measurements being higher than their paired graphite counterpart. Of the 36 specimens that did yield significant differences, all but three missed the 95% significance threshold by 1.2 pMC or less. These results show that direct carbonate 14 C dating of biogenic carbonates is a cost-effective and efficient complement to standard graphite 14 C dating. 
    more » « less